Diana Gonzalez LC’07

Diana Gonzalez grew up in the densely-populated streets of New Brunswick, New Jersey. Her Rutgers years paved the way for key role in New Jersey’s technology sector. She sees it as more than a job. “Rutgers is a foundation for all of my success,” she says. “I have always been drawn to the idea of serving others.” Gonzalez savored the expansive opportunities across New Jersey. He went to Washington, D.C. for a weeklong conference, meeting students from across the nation, and President of the New York Sharks in 1997.

That passion began taking hold at Rutgers. She was one of about a dozen students who became involved in the Rutgers chapter of the National Association of Black Engineers. Gonzalez says, “I always was interested in technology and design.” She also found time for a six-credit course in creative writing. In January 2018, just a year after her graduation, she landed a job at a healthcare company, where she was called upon to solve problems and build new products.

Gonzalez remembers her first day at work, “I was so nervous, but I also knew I was ready. I had a plan, and I was going to make it work.” She spent her first year at the company learning the ropes, and in her second year, she was promoted to a leadership position. She now oversees a team of engineers, and she says she is proud to be able to give back to the community that has supported her.

Looking back on her time at Rutgers, Gonzalez reflects on the lessons she learned. “My time there taught me the importance of hard work and dedication. I learned how to prioritize my tasks, and I learned how to work hard to achieve my goals.” She also says that Rutgers provided her with the skills and knowledge she needed to succeed in her career.

Today, Gonzalez is grateful for the opportunities that Rutgers provided her. “I am so thankful for the education and experiences I received at Rutgers. I am grateful for the friendships I made, and I am grateful for the knowledge I gained.” She says, “I am proud to be a Rutgers alumna, and I will always be grateful for the foundation that Rutgers provided me.”
Caroline Kratka knew from an early age that she wanted to become a scientist. "I always had a deep fascination with the way three proteins regulate each other in female cell division that produces eggs and sperm—and why it results in eggs with the right number of chromosomes," she explains. She initially planned to pursue a degree in biology, but after taking a course in organic chemistry, she was drawn to the analytical and experimental nature of the field. "Organic Chemistry really captured my imagination," she says, "and it was the beginning of my journey to becoming a scientist." 

Kratka's commitment to research and discovery has been evident throughout her career. After earning her PhD in chemistry from the School of Arts and Sciences, she took a position in a laboratory that focuses on catalytic processes. Her research involves the development of new methods for converting simple hydrocarbon molecules into valuable products using renewable energy sources. "The idea of doing something that is not only environmentally friendly but also economically sustainable is something that really speaks to me," she says. "I want to contribute to the development of clean technologies that could help mitigate the effects of climate change." 

One of Kratka's current projects involves the use of organometallic chemistry to create catalytic processes that can convert hydrogen from water and renewable electricity into fuels. "This approach, which involves the use of metal complexes to catalyze chemical reactions, has always been compelling to me," she says. "It's a way to combine my love of chemistry with my desire to make a positive impact on the world." 

Kratka's work is not only scientifically groundbreaking, but it also has practical applications. "In the future, we may be able to use the results of our research to develop new technologies that could help us live more sustainably," she says. "I'm excited about the potential of my work to contribute to a better future for everyone." 

Despite the challenges of conducting research during a pandemic, Kratka remains dedicated to her work. "I'm grateful to have the opportunity to continue my research and contribute to the scientific community," she says. "I'm hopeful that my work will help us understand more about the fundamental processes that govern the behavior of matter, and that we can use this knowledge to make the world a better place."